Tuesday, October 29, 2024

ECC - Elliptic Matrix - Lattice Maths - RS

Elliptic Matrix - Lattice Maths


Lattice Square cohesive, Time Stamp Elliptoid 

(c)Rupert S

Elliptic in out

*

Matrix Formula M.A.P & AVX Computed parallel instruction

We can either repeat loop solves : (cos(b), sin(b)) * a + mean,
Or we can form a table matrix

(cos(b), sin(b)) = x , * a + mean = y

     1      2     3      4
a x*y, x*y, x*y, x*y
b x*y, x*y, x*y, x*y
c x*y, x*y, x*y, x*y
d x*y, x*y, x*y, x*y

*

High Precision Maths Solve : { 16Bit, 32Bit, 64Bit & so forth } :

Create table ARC, SIN,TAN, Size = Multiples of 4 or rather 2x2, Or 8 or 4x4

Values (cos(b), sin(b)) = x

tan(T) = y

Example:

Values (cos(b), sin(b)) = x * y = tan(T)


     1      2     3     4
a x*y, x*y, x*y, x*y
b x*y, x*y, x*y, x*y
c x*y, x*y, x*y, x*y
d x*y, x*y, x*y, x*y

Parallel rows shall be sorted (SiMD)

Values of {A,B,C,D}:1, {A,B,C,D}:2, {A,B,C,D}:3, {A,B,C,D}:4,

Sort by atomic High Accuracy RTC (timer) ECC

The table shall be sorted by a given gradient, Ellipse,

The rules shall be:

Cache the ellipses,

Form the ellipses into a elliptic curve,

Reduce the curve to a set of maths formula,

Map the curves for dimensions over time,

Curve definition precision steps :

Reduce the curve to a higher state logical maximum cap : { 16Bit, 32Bit, 64Bit & so forth } per tick / Second

Specify a bit depth for the expansion of the curve : { 16Bit, 32Bit, 64Bit & so forth } per tick / Second

Send a reciprocal curve per..: second, Per negotiated time period, Per group

*****

New table #Formulae 08:51 29/10/2024


arc sin tan table , useful for clocks!, Well anyway Maths

Python

import numpy as np

# Create angles from 0 to 90 degrees in steps of 10 degrees
angles = np.arange(0, 91, 10)

# Calculate sine and tangent of each angle
sine_values = np.sin(np.radians(angles))
tan_values = np.tan(np.radians(angles))

# Create the table header
table_header = "{:10s} {:10s} {:10s}".format("Angle", "Sin", "Tan")

# Create the table rows using string formatting
table_rows = []
for angle, sine, tangent in zip(angles, sine_values, tan_values):
table_rows.append("{:10d} {:10.4f} {:10.4f}".format(angle, sine, tangent))

# Combine the header and rows into a table string
table_string = "\n".join([table_header] + table_rows)

# Print the arc sin tan table
print(table_string)

// (c)Rupert S

https://is.gd/ECH_TLS

*****

ID-Matrix-dev-random - AnonCRT - Generating public keys involving matrix operations
https://is.gd/MatrixGenID

In this example a Matrix M² is used with dev/random to develop a certificate ID of anonymous nature..

The common attribute is that dev/random & attached data are used to generate a key ID, Personal & Server,

Usage such as CC cards, ID & Radio or mobile data & wifi..

The principles of the cert chain!

RS

https://is.gd/ECH_TLS

*****

ASCON may be right for you, If you are in IOT & can barely breath on 33mhz https://is.gd/DictionarySortJS

PSK, ML-KEM, AES
https://is.gd/ECH_TLS
https://is.gd/KeyBitSecurity
https://is.gd/AES_Strengths

https://science.n-helix.com/2022/03/ice-ssrtp.html

https://science.n-helix.com/2024/10/ecc.html

https://science.n-helix.com/2024/10/tls.html

*****

Machine Learning


https://science.n-helix.com/2022/10/ml.html

https://science.n-helix.com/2021/03/brain-bit-precision-int32-fp32-int16.html

Accelerated Python: NPU, TPU, SiMD

https://is.gd/CoralAI
https://is.gd/TPU_Inference
https://is.gd/TPU_Inference2

https://is.gd/DictionarySortJS
https://is.gd/UpscaleWinDL
https://is.gd/TFLiteDev
https://is.gd/TFLiteDevP2

https://is.gd/HPC_HIP_CUDA
https://is.gd/SPIRV_HIPcuda

https://is.gd/UpscalerUSB_ROM

https://is.gd/OpenStreamingCodecs

https://is.gd/AMDPro2024PolarisCombined

The perfect Proposal RS

No comments: