Similar Wavelet Conversion with minimal reprocessing : Smart Access : RS

Similar Wavelet Conversion with minimal reprocessing : Smart Access : RS

Printing Technology 'When you "Tie" the Knot' :

We want those Hand drawn Donald duck, Micky & Daffy in true line drawn splendour,

But hand drawing 8K is hell,

Remaster printing technology : For all monitors, TV's & Operating systems : DTS, Dolby : Functioning wave conversion

#### Smart-De-Compression : repeated encoding cost reduction : (c)Rupert S

Wavelet Classifiers

Audio

Video

Compressed Data, GZip, BZip, LZH

Primarily our goal is to Originate Encode in a form that is Compatable with the hardware chain,

For example in the case of HDD > CPU > GPU the right Texture & Number formats, Often 16Bit or 32Bit float & Texture,

However with Video we have to expand the frame wavelets into Compatable Texture formats!

We convert the Video Wavelet in Smart Access to the closest Texture format wavelet; Or directly play the video! But suppose we are using Bink Video? We directly convert & keep wavelets that are the same in the new texture,

We therefore select a texture format like NV12 or ETC2; One that has the most Similar Wavelets & can therefore reduce Conversion Cost of the frame by as much as 100% (If all wavelets are the same)!

We know Wavelet types & Colour depth of all texture classes; So we will select one with a good range,

In most cases we play MP4+ Wavelets; So we can Use a JPG type texture; So all the compression wavelets remain minimally processed.

A single Frame + previous B Frame; Into a single texture of the same Wavelet Compression Classification,

The result is minimal processing CPU Cycles.

However with Video we have to expand the frame wavelets into Compatable Texture formats!

We convert the Video Wavelet in Smart Access to the closest Texture format wavelet; Or directly play the video! But suppose we are using Bink Video? We directly convert & keep wavelets that are the same in the new texture,

We therefore select a texture format like NV12 or ETC2; One that has the most Similar Wavelets & can therefore reduce Conversion Cost of the frame by as much as 100% (If all wavelets are the same)!

We know Wavelet types & Colour depth of all texture classes; So we will select one with a good range,

In most cases we play MP4+ Wavelets; So we can Use a JPG type texture; So all the compression wavelets remain minimally processed.

A single Frame + previous B Frame; Into a single texture of the same Wavelet Compression Classification,

The result is minimal processing CPU Cycles.

*

#### Overall reducing costs of higher resolution resolving; As available in 264 > 265 > 266/VVC & other Media Encoders : Rupert S

You can see that, formats such as 265 & 264 are related, Obviously at a higher resolution in the case of 265!

But in many Wavelet transform cases we can minimise the Processing cost, We do however need to know like Google's ML Voice Encoder; The ones we do not need to change (minimum benefaction)

My chief challenge of Wavelet thought is a multiple frame picture of an eye (WebP for example),

The resolution is 640x480 & We know in most probabilities that; The Eye was transformed to wavelet in HD,

So we have a wavelet curve; Black centre & A surrounding Iris!

We need to expand that wavelet so we will suppose that the higher precision version of the wavelet will add details?

We must explore how the wavelet transforms a Higher Resolution form into a lower resolution form,

We can therefore in theory use the same wavelet at higher resolving depth?

We might be able to convert a lower resolving wavelet in 12Bit into the 16Bit version & have a better understanding of the higher quality version!

We can therefore most probably reuse the wavelet; Transforming from 264 to 265 & upscale & compress more,

Overall reducing costs of higher resolution resolving; As available in 264 > 265 > 266/VVC

*

#WaveletProve Both that the wavelet is infinite & that; The Breton

shirt wavelet has a pattern represented in 12Bit but liberating into

the profound on 16Bit, 32Bit & more!

(To understand wavelet context, in textile & theory & of course Audio & Video)

Can we prove the wavelet of a Breton shirt for infinity, like mauri

My augment being that we can upscale that Breton shirt! & prove it's

17th century values...

Both that the wavelet is infinite & that; The Breton shirt wavelet has

a pattern represented in 12Bit but liberating into the profound on

16Bit, 32Bit & more!

Example Wavelets to prove upscaling is possible https://is.gd/WaveletData

*

Rupert S

*

Wavelet Upscaling : JPG / Video / Games

#### Example 2 Voxel to High Quality : RS

The Story : HP : V-FX Wavelet Voxel Transforms : V-FX-WVT (c)RS (Harry Potter + More)

I was wondering what to add to Wavelet transforms; Well i was thinking about Harry Potter,

Full body FX are Half Resolution; In Fact they are Depth of Field Voxels,

For people who don't know Voxel is when you make a Cube of the right shade from a picture & set it at the right depth!

For those criticizing such an act as lazy; You would have to understand how fast technology has developed!

Some characters Fly at a very low resolution & Others like Harry Potter & Melfoy Don't!

You would have to realise that V-FX is based on the ability of the person to be in the role... They perform ;-)

*

#### V-FX Wavelet Voxel Transforms : V-FX-WVT (c)RS (Harry Potter + More)

*

Definitions

The Wavelet is the JPG Pixel Group of a single Group of pixels at the same size as the composing Voxels of the V-FX

A Voxel is a Cube of Pixels set in 3D

*

When it comes to Transforms; This piece is called:

Transforms for classic movies : How you upscale VFX : RS

Firstly the VOXEL (Simple Wavelet Cube) needs to be compared to a fully dressed original character,

Then you need to map the correct features into The voxel cube space; After you Average Anti-Alias & Upscale the Cube Map (Original V-FX + Original Video Frame Person)

You then need to map an effective Wavelet of the Original V-FX with a modifier Layer of transparent Wavelet (The Photo in High Detail, This is also a Wavelet Series)

(c)RS

*

#### Example 3 : Lessons to learn : Wavelets : Upscaling (c)RS

Now about the Voxel 4x4 cube map 'Transform wavelet' is a simple JPG Wavelet

(if used properly compressed & older games did not because processors where not very fast (33Mhz)

High resolution 'Transform Wavelet' (Overlayed) is a full to higher resolution JPG Wavelet

In Upscaling we need to get from one to the other,

Transform Wavelet from Voxel Wavelet,

Sample Scaling:But supposing we have samples of like minded objects?

We can use Machine Learning to imprint a pattern!

But great looking as this is, not perfect as seen in Example 3 About Example 2 : HP!

Wavelet permutation:

Resolve the wavelet to full precision, Workable; But we need to know the result is correct!ML Can help; But that is very subjective..

Mostly this works.

Identity Follow through:

Machine Learning that identifies the subject matter [Samsung & LG TV's 2020+ Example]

So what do we do? We Add the lot! haha

Rupert S

*

Example 4 : Lessons to learn : Wavelets : Upscaling (c)RS

#### 2 Pattern Matrix Wavelet (c)RS

Wavelets are patterns; With Colour infilling (why not a wavelet itself!

Well wavelets come in forms (Gif)8Bit, 10Bit, 12Bit, 16Bit(JPG)

We can advance the precision by using a higher Precision (16Bit, 24Bit, 32Bit); But we need to save storage space!

First thing is to use bF16 & bF32; This keeps the majority of the data from being sub pixels.

Second thing is to make maximum use of multiple Precisions, Mix F16 with F32..

Google Lyra Codec demonstrates this in Machine Learning.

Third : Keep Precision within margins, Small Textures do well in 8Bit Matrix Wavelets...

But 16Bit Colour Precision & 16Bit Precision both look good in HD High Quality HDR WCG

(Usable as encryption archetype): Chaos:A:B:T:Pi:Arc:Sin:Tan

Very usable /dev/rnd Random Ring : TRNG : GPU : CPU : Asics : Using Chaos Wavelet{Wavelet:Colour Point} A to B as expression of Arc, Sin, Tan

[2PMW File Array]

[Header : Easy Identifier : Basic Name]

{Header Packed Wavelet Groups] [1 Image Wavelet : Colour Shading Wavelet 2, 4, 8 Group]

[Image Array lines]

|Packed Groups of] : [ Image Wavelet 1 : Colour Shading Wavelet Associations, 1 to 8]

[Packed Groups of] : [ Image Wavelet 1 : Colour Shading Wavelet Associations, 1 to 8]

[Packed Groups of] : [ Image Wavelet 1 : Colour Shading Wavelet Associations, 1 to 8]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

[Header : Easy Identifier : Basic Name]

{Header Packed Wavelet Groups] [1 Image Wavelet : Colour Shading Wavelet 2, 4, 8 Group]

[Image Array lines]

|Packed Groups of] : [ Image Wavelet 1 : Colour Shading Wavelet Associations, 1 to 8]

[Packed Groups of] : [ Image Wavelet 1 : Colour Shading Wavelet Associations, 1 to 8]

[Packed Groups of] : [ Image Wavelet 1 : Colour Shading Wavelet Associations, 1 to 8]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

[PG],[PG],[PG],[PG],[PG]

#### Audio/Video/Image Format : Packing Vectors (c)RS

Vector Wavelet Examples : Math objectWavelet Curve compress, Normally from left because we code Left to right & that is optimal for our hardware.

Can be numeric sequence Direction point 1=D D=1,2,3,4 2=Db = 1,2,3,4 | Displacement Dp = 1,2,3,4 Assuming Left To Right or curve displacement = Time

Distance N from source edge, Curve:Sin/Tan

(Example) D=1 Db=3 Dp1=2 Dp2=3 | Curve = Tan3+Db2

Logarithmic Pack,

Integer Comparator : N+N2+N3=N+1+2+3 | Sequence

*

#### Example 5 : Predict Scaling : SiMD/AVX.SSE3 : (c)RS

SiMD Interpolation grids & Predict with Raytracing & General SiMD

Reference Grid

https://science.n-helix.com/2023/03/path-trace.html

https://science.n-helix.com/2022/08/jit-dongle.html

With the Interception/Processing of Predict Statements in Frames of Video & Audio; Using a simple Grid:

Pr = Predict (motion) Px = Pixel t1:2:3 time period

PxPx1PxPxPx3

Pr1Pr2PxPx2Px

Px1PxPr3PxPx

Px1Pr2PxPxPx

Px1PxPr2PxPx

Basically you can see the pixels move in frame Px1 & Predicted in Pr2 & Pr3,

Raytracing SiMD predict future motion though maths; We can use the SiMD to,

Both predict & interpolate/Upscale from 8bit, 10Bit, 12Bit, 14Bit to 16Bit values or rather wavelets,

Because Raytracing SiMD are high precision maths; They prove advantageous if we have them; SiMD/AVX.SSE3

#### Interpolation : Prxi Pxri : {PxPrPi} Theory : RS

We must present a point between Px (pixel) & Pr (predict); In maths this would be a remainder,

We can draw a pixel in the Remainder Point; The Interpolation point (PI); When? When we upscale!,

We can use two principles, Px (actual pixel), Pr (Predicted Pixel), PI Pixel Interpolation!

We can guess with both Px & Pr on the content of PI & both Predict & Interpolate the pixel...

As additional Data; This does not worry us a lot.

PxPIPxPxPI

PIPxPrPIPx

PrPrPxPiPr

(c)Rupert S

#### Interpolation & Extrapolation Policy : RS

We can conclude Interpolation & Tessellation have requirements : 2D & 3D Spline Interpolation & Extrapolation; Gaussian methods on linear surfaces,

We extrapolate the new; Such as blade edge; We can however layout a simple grid to our supposition edge & interpolate.

We do not need to extrapolate where we have planed to draw; With so much as a 3cm polygon with 4 Lines & 2 edges,

We can however draw a fractal blade; For example : HellSinger from Elric Melbone.

*

Massive Datasets https://www.aimsciences.org/DCDS/article/2023/43/3&4

Python Libraries Interpolation:

15 Types

https://help.scilab.org/section_64fa3f01fdb19353faf0c6806a64a533.html

Gaussian

https://gmd.copernicus.org/articles/16/1697/2023/

https://gmd.copernicus.org/articles/16/1697/2023/gmd-16-1697-2023.pdf

#### JIT Compile Displacement Micromap : Interpolation & Extrapolation Policy : RS

Compress its internal geometry representations into the compressed format Just in time,Optimizing, Allocating & de-allocating in accord with Mesh Shaders & Cache availability.

VK_NV_displacement_micromap, which for Vulkan ray-tracing can help with added detail

No Comment https://www.phoronix.com/news/Vulkan-1.3.245-Released

VK_NV_displacement_micromap allows a displacement micromap structure to be attached to the geometry of the acceleration structure,

allow the application to compress its internal geometry representations into the compressed format ahead of time.

*

Our options for interpolation (don't forget Gaussian)

bsplin3val — 3d spline arbitrary derivative evaluation function

cshep2d — bidimensional cubic shepard (scattered) interpolation

eval_cshep2d — bidimensional cubic shepard interpolation evaluation

interp — cubic spline evaluation function

interp1 — 1D interpolation in nearest, linear or spline mode

interp2d — bicubic spline (2d) evaluation function

interp3d — 3d spline evaluation function

interpln — linear interpolation

linear_interpn — n dimensional linear interpolation

lsq_splin — weighted least squares cubic spline fitting

mesh2d — Triangulation of n points in the plane

smooth — smoothing by spline functions

splin — cubic spline interpolation

splin2d — bicubic spline gridded 2d interpolation

splin3d — spline gridded 3d interpolation

Right on the kindle paper white 2D Spline is good for a single layer, 3D Spline is good if you rasterize a shader behind the text and shade it: The method would not cost over 1% of processing power on a 2 core ARM 400Mhz, If the image is relatively static.

On full Colour HDR WebBrowser, The 3D Spline method makes sense with complementary colour blending...

On mostly static content; 3% of total page processing costs.

On mostly Static Text with mobile images a combination of 2D & 3D Spline; 7% to 15% of cost.

interp2d — bicubic spline (2d) evaluation function

interp3d — 3d spline evaluation function

Rupert S

Specification for Open Compute & Gaussian Interpolation & JIT Compile

Displacement Micromap : Interpolation & Extrapolation Policy : RS

https://science.n-helix.com/2023/02/smart-compression.html

https://drive.google.com/file/d/1C3Q9-LvB0T8p6XHpoZynttxuV2Eunwg2/view?usp=sharing,

https://drive.google.com/file/d/1KxxKRLOH01m5IYqAy9DeR9qq8gHIEdSs/view?usp=sharing,

https://drive.google.com/file/d/1SYLr0JwWD-DbbXHsrANxkFe2hBrn1cZf/view?usp=sharing,

https://drive.google.com/file/d/1c2K5GooOKY-kPHxiqc27A_l3pkcYxvZU/view?usp=sharing,

https://drive.google.com/file/d/1sjMpGVhvULsSloeoQ_zikzX2AzZlUBtY/view?usp=sharing

*

https://is.gd/WaveletData

Examples of compression

https://godotengine.org/article/betsy-gpu-texture-compressor/

https://github.com/darksylinc/betsy/blob/master/Docs/technical_doc_advanced.md

VK_NV_displacement_micromap, which for Vulkan ray-tracing can help with added detail

No Comment https://www.phoronix.com/news/Vulkan-1.3.245-Released

VK_NV_displacement_micromap allows a displacement micromap structure to be attached to the geometry of the acceleration structure,

allow the application to compress its internal geometry representations into the compressed format ahead of time.

*

Our options for interpolation (don't forget Gaussian)

bsplin3val — 3d spline arbitrary derivative evaluation function

cshep2d — bidimensional cubic shepard (scattered) interpolation

eval_cshep2d — bidimensional cubic shepard interpolation evaluation

interp — cubic spline evaluation function

interp1 — 1D interpolation in nearest, linear or spline mode

interp2d — bicubic spline (2d) evaluation function

interp3d — 3d spline evaluation function

interpln — linear interpolation

linear_interpn — n dimensional linear interpolation

lsq_splin — weighted least squares cubic spline fitting

mesh2d — Triangulation of n points in the plane

smooth — smoothing by spline functions

splin — cubic spline interpolation

splin2d — bicubic spline gridded 2d interpolation

splin3d — spline gridded 3d interpolation

*

#### 2D-3D Spline Interpolations with background complementary colour layer smooth blend

Right on the kindle paper white 2D Spline is good for a single layer, 3D Spline is good if you rasterize a shader behind the text and shade it: The method would not cost over 1% of processing power on a 2 core ARM 400Mhz, If the image is relatively static.

On full Colour HDR WebBrowser, The 3D Spline method makes sense with complementary colour blending...

On mostly static content; 3% of total page processing costs.

On mostly Static Text with mobile images a combination of 2D & 3D Spline; 7% to 15% of cost.

interp2d — bicubic spline (2d) evaluation function

interp3d — 3d spline evaluation function

Rupert S

Specification for Open Compute & Gaussian Interpolation & JIT Compile

Displacement Micromap : Interpolation & Extrapolation Policy : RS

https://science.n-helix.com/2023/02/smart-compression.html

https://drive.google.com/file/d/1C3Q9-LvB0T8p6XHpoZynttxuV2Eunwg2/view?usp=sharing,

https://drive.google.com/file/d/1KxxKRLOH01m5IYqAy9DeR9qq8gHIEdSs/view?usp=sharing,

https://drive.google.com/file/d/1SYLr0JwWD-DbbXHsrANxkFe2hBrn1cZf/view?usp=sharing,

https://drive.google.com/file/d/1c2K5GooOKY-kPHxiqc27A_l3pkcYxvZU/view?usp=sharing,

https://drive.google.com/file/d/1sjMpGVhvULsSloeoQ_zikzX2AzZlUBtY/view?usp=sharing

*

Texture Compressors

https://github.com/BinomialLLC/basis_universal

https://github.com/darksylinc/betsy

To Compress using CPU/GPU: MS-OpenCL

https://is.gd/MS_OpenCL

https://is.gd/OpenCL4X64

https://is.gd/OpenCL4ARM

PoCL Source & Code

https://is.gd/LEDSource

https://is.gd/BTSource

https://is.gd/Dot5CodecGPU

https://is.gd/CodecDolby

https://is.gd/CodecHDR_WCG &

https://is.gd/HPDigitalWavelet

https://science.n-helix.com/2022/09/ovccans.html

DSC, ETC, ASTC & DTX Compression for display frames

These are the main XRGB : RGBA Reference for X,X,X,X

https://drive.google.com/file/d/1AMR0-ftMQIIC2ONnPc_gTLN31zy-YX4d/view?usp=sharing

https://drive.google.com/file/d/12vbEy_1e7UCB8nvN3hYg6Ama7HIXnjrF/view?usp=sharing

https://github.com/BinomialLLC/basis_universal

https://github.com/darksylinc/betsy

To Compress using CPU/GPU: MS-OpenCL

https://is.gd/MS_OpenCL

https://is.gd/OpenCL4X64

https://is.gd/OpenCL4ARM

PoCL Source & Code

https://is.gd/LEDSource

https://is.gd/BTSource

https://is.gd/Dot5CodecGPU

https://is.gd/CodecDolby

https://is.gd/CodecHDR_WCG &

https://is.gd/HPDigitalWavelet

https://science.n-helix.com/2022/09/ovccans.html

DSC, ETC, ASTC & DTX Compression for display frames

These are the main XRGB : RGBA Reference for X,X,X,X

https://drive.google.com/file/d/1AMR0-ftMQIIC2ONnPc_gTLN31zy-YX4d/view?usp=sharing

https://drive.google.com/file/d/12vbEy_1e7UCB8nvN3hYg6Ama7HIXnjrF/view?usp=sharing

Khronos-1.3Extens

*

[Innate Compression, Decompression, QoS To Optimise the routing, Task Management To optimise the process] : Task Managed Transfer : DMA:PIO : Transparent Task Sharing Protocols

The following is the initiation of the Smart-access Age

https://science.n-helix.com/2023/03/path-trace.html

#### The Smart-access

[Innate Compression, Decompression, QoS To Optimise the routing, Task Management To optimise the process] : Task Managed Transfer : DMA:PIO : Transparent Task Sharing Protocols

The following is the initiation of the Smart-access Age

QoS To Optimise the routing:Task Management To optimise the process

https://science.n-helix.com/2021/11/monticarlo-workload-selector.html

https://science.n-helix.com/2023/02/pm-qos.html

https://science.n-helix.com/2021/10/he-aacsbc-overlapping-wave-domains.html

https://science.n-helix.com/2023/02/pm-qos.html

https://science.n-helix.com/2021/10/he-aacsbc-overlapping-wave-domains.html

https://science.n-helix.com/2023/03/path-trace.html

Transparent Task Sharing Protocols

https://science.n-helix.com/2022/08/jit-dongle.html

https://science.n-helix.com/2022/06/jit-compiler.html

https://science.n-helix.com/2022/08/jit-dongle.html

https://science.n-helix.com/2022/06/jit-compiler.html

Innate Compression, Decompression

https://science.n-helix.com/2022/03/ice-ssrtp.html

https://science.n-helix.com/2022/09/ovccans.html

https://science.n-helix.com/2022/08/simd.html

https://science.n-helix.com/2022/03/ice-ssrtp.html

https://science.n-helix.com/2022/09/ovccans.html

https://science.n-helix.com/2022/08/simd.html

https://godotengine.org/article/betsy-gpu-texture-compressor/

https://github.com/darksylinc/betsy/blob/master/Docs/technical_doc_advanced.md

## No comments:

Post a Comment